Telegram Group & Telegram Channel
Какие методы оптимизации в машинном обучении вы знаете?

Оптимизация — это, в сущности, процесс настройки алгоритма таким образом, чтобы минимизировать или максимизировать определённую функцию потерь.

🟣 Градиентный спуск. Самый простой и известный метод. Параметры модели обновляются с помощью градиента, чтобы прийти к точке минимума. Градиент — это вектор, направление которого совпадает с направлением наискорейшего локального возрастания функции. Соответственно, нас интересует антиградиент, то есть направление наискорейшего локального убывания.

🟣 Стохастический градиентный спуск. Вариация метода выше. В этом случае мы подменяем вычисление градиента по всей выборке вычислением по случайной подвыборке. Это ускоряет процесс обучения.

🟣 Градиентный спуск с моментом. Ещё одна вариация. С математической точки зрения, мы добавляем к градиентному шагу ещё одно слагаемое, которое содержит информацию о предыдущих шагах.

🟣 Adagrad. Адаптация стохастического градиентного спуска. Алгоритм адаптирует размер шага для каждого параметра индивидуально, что позволяет более эффективно находить оптимум.

🟣 RMSprop. Метод, разработанный для решения проблемы быстрого уменьшения скорости обучения в Adagrad.

🟣 Adam (ADAptive Momentum). Объединяет в себе идеи градиентного спуска с моментом и RMSprop.



tg-me.com/ds_interview_lib/101
Create:
Last Update:

Какие методы оптимизации в машинном обучении вы знаете?

Оптимизация — это, в сущности, процесс настройки алгоритма таким образом, чтобы минимизировать или максимизировать определённую функцию потерь.

🟣 Градиентный спуск. Самый простой и известный метод. Параметры модели обновляются с помощью градиента, чтобы прийти к точке минимума. Градиент — это вектор, направление которого совпадает с направлением наискорейшего локального возрастания функции. Соответственно, нас интересует антиградиент, то есть направление наискорейшего локального убывания.

🟣 Стохастический градиентный спуск. Вариация метода выше. В этом случае мы подменяем вычисление градиента по всей выборке вычислением по случайной подвыборке. Это ускоряет процесс обучения.

🟣 Градиентный спуск с моментом. Ещё одна вариация. С математической точки зрения, мы добавляем к градиентному шагу ещё одно слагаемое, которое содержит информацию о предыдущих шагах.

🟣 Adagrad. Адаптация стохастического градиентного спуска. Алгоритм адаптирует размер шага для каждого параметра индивидуально, что позволяет более эффективно находить оптимум.

🟣 RMSprop. Метод, разработанный для решения проблемы быстрого уменьшения скорости обучения в Adagrad.

🟣 Adam (ADAptive Momentum). Объединяет в себе идеи градиентного спуска с моментом и RMSprop.

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/101

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

NEWS: Telegram supports Facetime video calls NOW!

Secure video calling is in high demand. As an alternative to Zoom, many people are using end-to-end encrypted apps such as WhatsApp, FaceTime or Signal to speak to friends and family face-to-face since coronavirus lockdowns started to take place across the world. There’s another option—secure communications app Telegram just added video calling to its feature set, available on both iOS and Android. The new feature is also super secure—like Signal and WhatsApp and unlike Zoom (yet), video calls will be end-to-end encrypted.

The lead from Wall Street offers little clarity as the major averages opened lower on Friday and then bounced back and forth across the unchanged line, finally finishing mixed and little changed.The Dow added 33.18 points or 0.10 percent to finish at 34,798.00, while the NASDAQ eased 4.54 points or 0.03 percent to close at 15,047.70 and the S&P 500 rose 6.50 points or 0.15 percent to end at 4,455.48. For the week, the Dow rose 0.6 percent, the NASDAQ added 0.1 percent and the S&P gained 0.5 percent.The lackluster performance on Wall Street came on uncertainty about the outlook for the markets following recent volatility.

Библиотека собеса по Data Science | вопросы с собеседований from sg


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA